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FOREWORD 

The research results contained in this technical report were performed under an Air 

Force Contract F33615-91-C-3205 entitled, "Finite Element Thermal Acoustic Nonlinear 

Analysis of Aerospace Structures." The report is based essentially on a Ph. D. dissertation 

prepared by Roger R. Chen under the supervision of Dr. Chuh Mei. The document 

presents a finite element formulation and solution procedure for the prediction of nonlinear 

response of composite plates of arbitrary shape subjected to intense acoustic and thermal 

loads. The work was conducted at the Department of Aerospace Engineering, Old 

Dominion University. Mr. Kenneth R. Wentz and Dr. Howard F. Wolfe, WL/FIBGD, 

Structural Dynamics Branch, Flight Dynamics Directorate, were the technical monitors. 
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Chapter 1 

INTRODUCTION 

1.1 Background 

"Jet Crash Off Italy Kills 35" The New York Times reported on January 11, 1954. 

"Rome, Jan. 10 — Thirty-five persons were almost certainly killed when a British Comet 

jet airliner crashed into the sea this morning about halfway between the islands of Elba 

and Monte Cristo, off the Italian western coast." It was Monday, when people went to 

work, they read this news very sadly. The jet airliner was the Comet, the first propelled 

by jet turbo engine. 

The news surprised the world aircraft designers and manufacturers. After exhaustive 

investigation and tests on components of the Comet, it was concluded that the accident 

was caused by fatigue failure of the pressurized cabin. The small fatigue crack originated 

from a corner of an opening in the fuselage. Since then, extra additional attention has 

been focused on airframe fatigue design. It has been realized that such failures can 

substantially increase the maintenance burden and life cycle cost of the aircraft. 

In the late 1950's, incidents were reported in which structural components close 

to high intensity jet exhausts were reaching such high levels of vibration response, 

due to acoustic excitation, that fatigue cracks could develop and spread quite rapidly. 

These incidents alerted industry, university and research centers to the possibility of 

serious design problems as the performance of aircraft and engines increased. Since 

then, the acoustically induced fatigue failures in aircraft have been one of the major 



design considerations. A considerable number of investigations sponsored by USAF 

and AGARD have been carried out during the 1960's and early 1970's. This series of 

research lead to design monographs of every type of metal structures. It made it possible 

for aircraft designers to produce satisfactory structures. 

This was the situation towards the middle of 1970's. Although the power of the jet 

engines was still increasing dramatically, the pressure levels were not increasing because 

of the use of the higher bypass configurations in engine design which are needed to reduce 

the community noise. This lead to a great reduction in the research and development 

activity on sonic fatigue. 

In the mid and late 1980s, new interest in random vibration was raised primarily 

as a result of advances in high speed flight. The missions for these high speed flight 

vehicles will expose structures to severe acoustic and thermal loads. These include the 

F-22 advanced tactical fighter (ATF), the supersonic advanced short take-off and vertical 

landing aircraft (ASTOVL), the national aerospace plane (NASP) and the high speed civil 

transport (HSCT). The new vectored thrust propulsion systems on ATF and ASTOVL 

provide short take-off and landing capability, and also increased maneuverability. Most 

designs feature engine exhaust locations that are positioned near the aircraft mass center, 

and exhaust jets are directed either onto, or nearly onto, the aircraft structure. Estimates 

of acoustic loads indicate that for some vectored thrust directions most of the aircraft is 

immersed in an acoustic field with levels well above 150 dB, with levels much higher 

near the nozzle (Mixson, 1988). Exhaust temperatures may exceed 1000°F in the region 

of nozzle, and therefore the structure must withstand high thermal loads. In addition, 

the HSCT, ATF and NASP will fly at supersonic/hypersonic speeds and will be exposed 

to intense in-flight acoustic and thermal environments (Pozefsky et al., 1989). Due to 



aerodynamic heating, the structures will experience high temperatures with large thermal 

gradients. 

To meet increased performance requirements, new complex, lightweight structures 

and advanced materials will be required. The complex structures under consideration 

have significant uncertainties in fatigue behavior due to intense acoustic loads in the 

presence of high temperatures. The thermal environment can affect acoustic fatigue by 

introducing thermal inplane forces and thermal bending moments, as well as altering 

(temperature dependent) material properties. Such thermal effects may also introduce 

large distortions and snap-through (or oil-canning) behavior, alter buckling loads and 

modify vibration characteristics. The intense acoustic loads can affect fatigue life by 

introducing large deflection geometrical nonlinearities, modal coupling and multiple- 

mode participation ( Mei and Wolfe, 1986). Such high sound pressure levels may even 

drive the structures to have damping nonlinearity ( Mei and Prasad, 1987). Because of 

high costs and difficulties with instrumentation in experiments at high acoustic intensity 

and elevated temperatures, reliable experimental data is difficult to acquire. Thus, in the 

design process, greater emphasis will be placed on analytical and computational methods. 

This brings a tremendous challenge to the analysts for predicting nonlinear response of 

complex structures subjected to acoustic and thermal loads. 

A fundamental challenge of thermo-acoustic random response of aerospace structures 

is the multi-disciplinary nature of the problem. The thermal environment strongly affects 

the structural random response because of the development of restraint forces due to 

thermal expansion and the change of material properties at elevated temperatures. Since 

the structural response due to high levels of acoustic loads is highly nonlinear and strongly 

dependent on the thermal effects, the problems are thus inherently multi-disciplinary and 



nonlinear. It is, therefore, the purpose of this study to develop an analytical formulation to 

determine the nonlinear random response of composite laminates to combined acoustic 

and thermal loads applied simultaneously. 

1.2 Literature Survey 

A limited number of papers studied the thermal postbuckling of laminated composite 

plates. Noor and Peters (1983) have investigated the bifurcation buckling and postbuck- 

ling response of composite plates subjected to combined axial compression and uniform 

temperature distribution by the multiple-parameter reduced based technique. Recently, 

they (Noor et al., 1992) have studied the thermo-mechanical buckling and postbuckling 

response of composite plates subjected to combined axial and thermal loadings. The 

analysis is based on a first order and third-order shear deformation, von Karman type 

of nonlinear plate theory. A mixed formulation is used with the fundamental unknowns 

consisting of the generalized displacements and the stress resultants of the plate. An 

efficient multiple-parameter reduction method is used in conjunction with mixed finite 

element models. Sensitivity derivatives are evaluated and used to study the sensitivity 

of the postbuckling response to variations in the different lamination and material pa- 

rameters of the plate. In a paper presented at the 35th SDM conference (Noor et al., 

1994), a similar study of the composite plate with cutout was conducted. Huang and 

Tauchert (1986) used analytical continuum approach and studied the thermal buckling 

and postbuckling behavior of simply-supported antisymmetric angle-ply plates subjected 

to uniform temperature change. Their results illustrated the effects of the number of 

layers, the ply angles and the aspect ratio of the plate upon the thermoelastic response. 

Chen and Chen (1989, 1991) have studied the thermal postbuckling behaviors of lami- 

nated rectangular, antisymmetric angle-ply composite plates subjected to a nonuniform 



temperature field by the finite element method. Based on the principle of minimum po- 

tential energy, the nonlinear stiffness matrix and geometric stiffness matrix are derived. 

Their results reveal that the thermal postbuckling behavior of composite laminated plates 

is influenced by lamination angles, plate aspect ratio, modulus ratio and the number of 

layers. Their results also revealed that the effect of temperature-dependent mechanical 

properties on the thermal postbuckling behavior is significant. Librescu et al. (Librescu 

and Souza, 1991 and Librescu et al. 1994) recently studied the static postbuckling of 

simply supported flat panels exposed to a stationary nonuniform temperature field and 

subjected to a system of subcritical in-plane compressive edge loads. The study is per- 

formed within a refined theory of composite laminated plates incorporating the effect of 

transverse shear and the geometric nonlinearities. Meyers and Hyer (1992) have analyti- 

cally studied thermal buckling and postbuckling of simply supported symmetric composite 

laminates under uniform temperature change using the Rayleigh-Ritz method. Birman 

and Bert (1993) investigated the effects of temperature on buckling and postbuckling 

behavior of reinforced and unstiffened composite plates and cylindrical shells. First, the 

equilibrium equations are formulated for a shell subjected to the simultaneous action of a 

thermal field and an axial loading. These equations are used to predict a general form of 

the algebraic equations describing the postbuckling response of a shell. Conditions for 

the snap-through of a shell subjected to thermo-mechanical loading are formulated. The 

theory was also applied to prediction the postbuckling response of flat large-aspect-ratio 

panels reinforced in the direction of their short edges. 

There are many survey articles which review analysis techniques and experiments of 

nonlinear random structural responses. Mei and Wolfe (1986) have presented a discussion 

on analytical and experimental techniques to predict the acoustic fatigue life of aircraft 



structures. They discussed the problem and the steps taken to solve the problem and 

reviewed the analytical approaches to single degree-of-freedom (SDOF) and multi-degree- 

of-freedom (MDOF) linear and nonlinear systems under random excitations. They also 

reported the advances of analytical prediction and experiments. To (1987) has also 

presented a comprehensive survey paper on the analysis of nonlinear systems subjected 

to random excitation. Methods reported to be applicable to both SDOF and MDOF 

systems include equivalent linearization techniques (EL), the Fokker-Planck-Kolmogorov 

equation (FPK) and moment approaches. Clarkson (1994) has recently presented a very 

comprehensive sonic fatigue technology review report. He reported that: " From the 

early-1960s until the mid-1980s, there was very little theoretical development for sonic 

fatigue prediction." The design monographs for most common aircraft structures were 

made based on simple theoretical models and results of specially designed tests. The use 

of advanced composites in the 1980s generated an increasing interest in development of 

more sophisticated theoretical models, because the much wider range of parameters of 

composite panels made creation of nomograph based on tests not possible. 

A limited amount of investigations on structural response subjected to intense acoustic 

and thermal loads exists in the literature. Seide and Adami (1983) were the first who 

studied large deflection random response of a thermally buckled simply supported beam. 

The thermal load and the acoustic pressure are thus considered to be applied in sequence. 

The well-known classic Woinowsky-Krieger large amplitude beam vibration equation is 

used. The Galerkin's method and time domain numerical simulation are then applied to 

obtain random response. 

The papers by Mei and Prasad (1987 and 1989) aim to explain the observed 

broadening of the response peak and its increase in frequency by including nonlinear 



damping as well as large amplitude displacements in the theory. This is a very valuable 

formulation because damping in inherently nonlinear and its behavior and magnitude is 

one of the major unknowns in the work to date. In their work a single mode analysis is 

used and the results show the expected broadening and increase in frequency. 

Most recently, the Galerkin/numerical simulation approach was applied to simply 

supported metal and orthotropic composite rectangular plates by Vaicaitis and Arnold 

(1990) and Vaicaitis (1991), the thermal and acoustic loads are considered to be applied 

simultaneously. The classic von Karman large deflection plate equations including 

temperature and orthotropic property effects are employed. The thermal effects on 

rectangular isotropic plate random response have also been investigated thoroughly by Lee 

(1993). The three thermal effects: (i) global expansion by uniform plate temperature, (ii) 

local expansion by temperature variation over the plate, and (iii) thermal moment induced 

by temperature gradient across the plate thickness are included in the investigation. The 

single mode Galerkin method and the EL (Roberts and Spanos, 1990) technique are 

used. The analytical continuum approaches have been so far limited to uniform or linear 

temperature distributions and to beams and rectangular plates of either simply supported 

or clamped edges. 

For over three decades, the finite element method has been the predominant method 

for structural mechanics. However, there are only few studies on nonlinear random 

response of structures using the finite element method. Hwang and Pi (1972) have 

investigated a simply supported rectangular isotropic plate subjected to rain-drop type 

uniform intensity random acoustic loads. The high precision 18 degree-of-freedom (DOF) 

triangular plate bending element developed by Cowper et al. was used. Both first and 

second-order nonlinear stiffness matrices are developed to account for large deflections. 



The finite element nonlinear equations of motion were treated as a linearized eigenvalue 

problem with an iterative scheme. The acceleration spectra at the plate center were 

obtained at three pressure levels. No comparison was made with other approximate 

solutions. 

Busby and Weingarten (1973) used the finite element method only to obtain the 

nonlinear differential equations of motion which are expressed in terms of the normal 

mode coordinates. The EL method is then used for the solution of these equations. Mean 

square deflections at the midspan are obtained for beams with both ends simply supported 

and both ends clamped. However, comparisons with other solutions were not made. 

Chiang (1988) has presented a finite element method for large deflection random 

response of beams, plates and built-up panels subjected to acoustic loads. Geometrical 

stiffness matrices to account for the induced inplane forces due to large deflections were 

developed for an isotropic beam element and an isotropic rectangular plate element. Root- 

mean-square (RMS) maximum deflections and RMS maximum strains are obtained for 

beams and rectangular plates with simply supported and clamped boundary conditions. 

The finite element results are in good agreement with single-mode Fokker-Planck- 

Kolmogorov (FPK) equation and analytical equivalent linearization solutions. 

Locke (1988) and Locke and Mei (1990) extended the finite element method to 

isotropic beam and rectangular plate structures subjected to thermal and acoustic loads 

applied in sequence. The thermal load considered is a steady-state temperature distribu- 

tion AT(x,y). The thermal postbuckling structural problem is solved first to obtain the 

deflection and thermal stresses. The deflection and thermal stresses are then treated as 

initial deflection and initial stresses in the subsequent random vibration analysis. The 

Newton-Raphson iterative method is used in the thermal postbuckling analysis. For the 



nonlinear random vibration, the linear mode shapes of the thermally buckled structure are 

used to reduce the order of the system equations of motion to a set of nonlinear modal 

equations of a much smaller order. The EL technique is then used to iteratively obtain 

for RMS responses. Excellent agreement has been obtained between the finite element 

and the Galerkin/numerical simulation results by Seide and Adami. 

Jay Robison (1990, 1991) has derived a numerical integration routine from a set of 

unified single step integration algorithms using a weighted satisfaction of the equilibrium 

equation governing the large deflection random response of laminated composite plates. 

The equilibrium equations are derived using large deflection finite element formulations. 

The in-plane inertia terms are considered in the formulation, however, rotary inertia 

terms are assumed negligible. Probability density, spectral density and autocorrelation 

functions of the maximum displacement and strain responses are presented for three 

acoustic excitation levels. Classical thin plate boundary conditions and pseudo white 

noise excitation are used in this investigation. 

Chen (1990) and Chen and Yang (1991) have presented a finite element formulation 

combined with stochastic linearization and normal mode methods, including the geo- 

metrical nonlinearity for the study of random vibration responses of beams, frames and 

composite plates subjected to simultaneously spatial and temporal Gaussian stationary 

nonwhite and nonzero mean random excitations. 

Chen and Mei(1993) presented a finite element formulation, solution procedure and 

results of a study attempted to analyze nonlinear random response of beams subjected to 

acoustic and thermal loads applied simultaneously. 

1.3 Outline of the study 

The acoustic fatigue life prediction problem is very important to military and civil 



aircraft. The problem consists of three major parts: (1) acoustic loading analysis; (2) 

determination of the response of structures; and (3) estimation of the fatigue life of the 

materials. In this study, only the second part is concerned. 

Since the structural response due to intense acoustic pressure levels is extremely 

nonlinear and strongly dependent on the thermal environment, the method of superposition 

is not applicable. Rather the thermal effects must be integrated and coupled directly into 

the acoustic-structural analysis. The finite element formulations by Chiang, C. T. Chen 

and Robinson did not consider temperature effects. The formulation by Locke treated the 

two loads in sequence; thus there is no inter-dependence between the thermal effects and 

the acoustic-structural response. In the aforementioned literature survey, it appears that 

studies of the nonlinear random response of structures subjected to simultaneously applied 

acoustic and thermal loads using finite element method are not available in the literature. 

In addition, only normal incidence acoustic pressure loads have been considered in 

all the existing investigations. It appears that studies of the nonlinear random response 

of plates subjected to a grazing incidence acoustic wave using finite element method are 

not available in the literature. 

Therefore, this dissertation will develop a finite element formulation and solution 

procedure which is believed to be the first attempt to analyze nonlinear random response 

of complex composite panels subjected to simultaneous acoustic and thermal loads, and 

the acoustic pressure can be either normal incidence or grazing incidence. 

In Chapter 2, the formulation for the problem is derived. The formulation is based 

on von Kaiman large deflection theory and the first order shear deformation theory. In 

Chapter 3, the solution procedure is described. Using linear vibration modes of the 

thermally buckled structure, the governing equations are reduced to a set of nonlinear 

10 



coupled modal equations. The equivalent linearization technique is employed, because 

satisfactory results have been obtained using this technique. Finally, in order to uncouple 

the linearized modal equations of motion, the modal transformation is utilized once more. 

In Chapter 4, the numerical results are presented. It includes thermal buckling and 

postbuckling results, random response and acoustic-thermal combined response. Chapter 

5 is concerned with conclusion and further work suggestions. 

11 



Chapter 2 

FORMULATIONS 

In this chapter, the governing nonlinear equations of motion are derived for a plate 

of arbitrary shape subjected to a set of simultaneously applied thermal and acoustic 

loads. The thermal load is taken to be an arbitrary distribution, but steady-state, i.e., 

AT = AT(x,y,z). The acoustic loading is considered to be a stationary Gaussian 

pressure wave, with the extension such that in order to include in the travelling wave 

a combination of wavelengths, the pressure at any one point is random but the whole 

pattern moves in the direction A ( normal incidence A=0° and grazing incidence A=90°) 

with wave traveling speed c. 

The following features are considered in the formulation: 

(a). Initial imperfection deflection w0(x,y), 

(b). In-plane initial forces {N0}, 

(c). Arbitrary temperature distribution AT(x,y,z), 

(d). Large deflections in von Kaiman sense, 

(e). Composite materials with transverse shear deformation, and 

(f). Acoustic waves directed with an inclination angle A. 

The assumption regarding temperature independent material properties is utilized in 

this study. 

12 



The three-node triangular Mindlin (MIN3) plate element with improved transverse 

shear is extended and employed in this study. The element was initially developed by 

Tessler and Hughes (1985). This simple plate element of five degrees of freedom per 

node in large-scale finite element structural analysis and, especially, in nonlinear analysis, 

has great computational advantage. Tessler and Hughes have found that the transverse 

shear energy was the major cause of difficulty, therefore a special interpolation scheme, 

anisoparametric interpolation, was devised. In addition, the element transverse shear 

energy was further enhanced by a suitable (element appropriate) shear correction factor. 

Based on extensive numerical testing, MIN3 is an excellent element. They concluded: 

"Due to its reliability, economy, and good stress recovery, it may be regarded as a 

viable candidate for extension to shell, laminated composite and nonlinear analyses." 

The finite element formulation is described as follows for the nonlinear random response 

of composite panels. 

2.1 Element Displacement Functions 

A typical triangular plate element is shown in Figs. 2.1 and 2.2 to discretize a 

rectangular panel. The element displacement functions used in the derivation of the 

equations of motion are: 

ux = u(x,y,t) + zi/;y(x,y,t) 

uy = v(x,y,t) + zij;x(x,y,t) (2.1) 

uz - w(x,y,t) 

where ux,uy,uz are the three displacement components at any point in the element; u, 

v, w are the displacements of the middle surface; and ipx and $y are the rotations of the 

normal around the x and y axes due to bending only. 

13 



The node displacement vector is defined as follows: 

= [[m,W2,W3\, 1^x1,0*2,^*3,^1,^2,^3.1, 

[U1,U2,U3,V1,V2,V3\\ 

The interpolation functions for the MIN3 element are 

w(x,y,t) = [Hw\{wb} + |f?Wj W 

= L6,6,6JW} + [LuL2,L3,M1,M2,M3\{^} 

(2.2) 

(2.3) 

<M*,y,t) = KJW = L6,6,6, o,o,ojw (2.4) 

^y{x,y,t)= [^JW= LO,o,o,6,6,6JM (2.5) 

u(s,y,i) = L#«J{™m} = L6,6,6,0,0,0j{wTO} (2.6) 

v(aj,y,t) = L^J{^m} = lPJ0,0,6,6,6J{«'m} (2.7) 

where 6,6,6 are the area coordinates, and the transformation between x,y and 6 is 

1 ^ f4ll 
1 l 1  ' 

Xi X2 Z3 < 6 
2/1 V2 2/3. 

.6 - 
'6* 

6 

w6 - 

2l 

2/ J 

322/3 - 33Z/2     2/2 - 2/3      33 - a;2 

332/1 - 3it/3    t/3 - yi    rri - xz 
.312/2 - 322/1      2/1 - 2/2      32 - Si 

1 \ 

X 

y) 

(2.8) 
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where 2A = (z2 - xi)(y3 - yi) - (a* - xi)[y2 - yi), A is the area of the triangular 

element, (a?i,yi) is the coordinates of the node i; and 

Lx = i(63^4 - &2iV6), I2 = khN5 - b3N±) 
o o 

U = ^(b2N6 - hN5), M: = ^(a2N6 - asN4) 

M2 = -((13N4 - atNs), Mz = -{aiNs - a2N6) 
o o 

iv4 = 466, #5 = 466, #6 = 466 (2.9) 

Ol = «32,   02=2135   03 = ^21? 

&i = y23,  h = 2/31, h = yi2 

/ 

XJJ — X{    XJ, yij — yi    yj 

kW.ml 
t*?ZmdA = 2A 

(2 + k + l + m)\ 
(2.10) 

2.2 Nonlinear Strain-Displacement Relations 

The von Karman strain-displacement relations are given as 

{e}= j 6y   1={^}+Z{K} (2.11) 

where {e°} is the in-plane strain vector, and {AC } is the curvature vector such that 

,2        \ 

K> 
w. 

[2WjXW,y   J 
> + < 

w,xw0iX 

W,yW0,y 

lW]XW0,y + W]yW0)X J (2.12) 

Vv,x 
V>x,y > (2.13) 

>y,y + 0X,X> 

where subscripts m, b and 0 denote that the inplane strain components are due to 

membrane, bending and initial imperfection deflection respectively.   The shear strain- 
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displacement relations are given by 

lyz w 

{7} 
y \       1 H 

+ (2.14) 
Ixz w ,x .0! y 

where the subscript "," denotes the derivative. 

2.3 Constitutive Law 

For the k-th layer of an orthotropic material with an orientation <f>, the stress-strain 

relations are 

Mk = <TV ({e}-{eAT}k) + {^No} 
Qn   Q12   Qi6 

Q12   Q22   Q26 

. Txy J k      LQl6    Q26    Qö6. 

= [Q]k(W-{^T}k) + WNo} 
lyz 

" = [Qs]kb) 

(2.15) 

H* = 
lyz 

Q45       Q55 
'xz ) k <lxz 

where the free-expansion thermal strain vector is 

(ax 

{tAT}k = < a», > AT = 

ka xy 

C2 S2 

s2       c2 
-2cs 
2cs 

_2cs    -2cs    2(c2-52) 

10   ) 

\ AT 
(2.16) 

c = cos <j>,   s = sin <f> 

where [Q]k is the transformed reduced stiffness matrix for the k-th lamina, and {crNo} 

is the initial stress vector corresponding to {N0}. 
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2.4 Resultant Laminate Forces and Moments 

The resultant forces, moments and shear forces per unit length acting on a laminate 

are obtained by integration of the stresses in each layer through the laminate thickness 

({N},{M}) = y_iLMk(l,z)dZ (2.17) 

and 

{R]=l\r h        I    ' T.Z 

dz (2.18) 

h    yxzij. 

where {N} is the resultant force, {M> is the moment and {R} is the shear force vector. 

The laminae shear stiffness is 
h 

[A,] = / 
Q54   Q55 

dz (2.19) 

For a lamina in the material axes, the so-called reduced stiffnesses are 

Ei 
Q 11 

Ql2 = 

1 - ^12^21 
V12E2 wi\E\ 

1 - VyiWll        1 - ^12^21 

Q22 = z  
1 - 1/12^21 

^66 = G12 

(2.20) 

Q44 = G23 

Q55 = Gn 

where G23, G13 are the shear modulus of the materials. Then the transformed reduced 

stiffnesses are 

[T] 

[«] = [Tr[Q}[T]-T 

' c2     s2       2sc 
= s2     c2      -2sc 

—sc   sc   c2 — s2 

5 = ■■ sin </?, c = cos <p 

(2.21) 
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The above equations can be written as 

fNl =[A   Blfe°\      fNATl      fN0l 
\Mj      [B    Djl«/     lMATJ+l0/ (2.22) 

{R} = [As]{7} 

where [A], [B] and [D] are the laminate extensional, extension-bending and bending 

stiffness, respectively, and [As] is the laminate shear stiffness. And the free-expansion 

thermal resultant force and moment vectors are 

h 
2 

({NAT}, WAT}) = j [Q]k{exrh{h*)d* (2.23) 
_h 

2 

and {N0} is a known initial force vector. 

2.5 The Principle of Virtual Work 

The virtual works done by internal and external forces are 

SWint = / ({£e°}T{N} + {<5«}T{M} + a{£7}T{R}) dA (2.24) 

and 

(2.25) 
£Wext =  / [5w(p(x,y,t; A) - phwM) 

JA 

+Su(-phu tt) + Sv(-ph v)tt)]dA 

where p(x,y,t;A) is the acoustic excitation, A is an incidence angle for normal or grazing 

acoustic wave, p is the mass density of the laminate, and a is a shear correction factor, 

a = E^7 (2-26) 

1 + 0.5^- 

It is assumed that the rotatory inertia effect is neglected for relative thin plate (a/h>50). 
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Some geometric matrices are given below: 

[9] = 

{G} = 

'w,x 

0 
0 " 

W,y ,     [*o] = 
_W,y W,x. 

10 0 ,x 0 
0 woiy 

W0,y Wo,x 

[C^b]{wb}+ [c^]W 
(2.27) 

u> '2/ 

{4} = jWG},    {«41 = 5*([»]{G}) = PH«?) 

[C„] = 

5^ 

£L*.J + £L*,I 

_1_ 

2Ä 

2/23     2/31     2/12       0 0        0 

0 0 0       132     £13     £21 

_£32     £13     £21     2/23     2/31     2/12. 

(2.28) 

[c#] = 2l 
2/23     2/31      2/12 

£32     £13     £21 
(2.29) 

[c^] = 
_   [•"«'V'J 
Ö£ 

d 
dy 

\HW$\ 

1 C^ii    C^i2   C^iz    C^f/,14   C^^i5    C^ißie 
2A LC^V21     Ci/>ip22     Ci>i>23     C^24     C^25     C^26 

(2.30) 

where the 12 C^.-'s are related to the area coordinates and the coordinates of the three 

nodes, and they are listed in the Appendix A. 

d 

[Cb 

dx ^ 
i 

2Ä 

0 0 0       2/23     2/31     2/12 

£32     £13     £21       0 0 0 

.2/23     2/31     2/12     £32     £13     £21 

(2.31) 

[Ca] = 2Ä 
£32     £13     £21 

2/23      2/31      2/12 
(2.32) 
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[C-rtl = d 
dx [HwA + [H^\ 

Cil>ip21 + £l     Ct/,^22 + &     C^23 + £3 C^24 C^25 C^26 
C^VH ^Wl2 CV^13 C^,^,i4 + £1     C^^/,15 + £2     C^IQ + £3 

(2.33) 

{M} = [B}{e°} + [D]{K} - {MAT} 

1, 

{£7}T = {s™b}
T[c7bf + W}T[^ 

{Ä} = [^][C7i]{toj} + [AJ][C^]{0} 

The virtual work principle gives 

(2.34) 

Substituting Eqs. (2.28)-(2.33) into Eqs. (2.12)-(2.14), one obtains 

{8e°f = {8wm}T[Cmf + {8whf[C^]T[e}T + {S^f [C^f [6}T 

+{^b}T[c^b}T[e0]T + {8^}T[c^}T[e0)T 

{N} = [A]{e°} + [B]{K} - {NAT} + {N0} 

= \A][Cm]{wm} + llAMdC^iwk} + [C^]W) + [A][9][C^]{wlo}      (2.35) 

+[A}[0] [CM] M + [B][Cbm - {NAT} + {N0} 

{8K}
T
 = mT[cbf (2.36) 

= \B][Cm]{wm} + ^[B}[e}{[C^]{wb} + [C^W) + [BM[C*b]{Wo}      (2.37) 

+[B}[9] [CM] {&} + [D][Ct]{1>} - {MAT} 

(2.38) 

(2.39) 

8Wint = 8Wext (2.40) 

Finally, from Eq.   (2.24): 
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8Wini = I ({6e°f{N} + {6K}
T

{M} + a{6<yf {R})dA 

A 

= J{{Swm}T[Cm]T([A][Cm]{wm} + \[A}[Ö}[C^b]{wb} + \[A][9][CM]W} 

A 

+[A][0) [C#] {wb0} + [A][e] [C„] Wo} + [B}[Cb]W - {NAT} + {N0}) 

+{Swbf[Cfb]T[6}T([A][Cm]{wm} + \[A][9] [C#] {wb} + l-[A][0] [CM] W} 

+[A}[9] [C&] {wb0} + [A][e] [CM] WO} + [*][Cy W - {NAT} + {N0}) 

+{6j>f [C^fief ([A][Cm}{wm} + \[A}[9] [C#] {wb} + l[A][0\ [CM] W 

+[A}[9] [C&] {wb0} + [A][ff\ [0^] WO} + [B][Ch]{j>} - {NAT} + {N0}) 

H^h}T[C*b]T[e0]T([A][Cm]{wm} + l-[A][d}[C^b]{wb} + \[A][9][CM]W} 

+[A}[9] [C#] {wb0} + [A}[6] [CM] WO} + [B][Cb}W} - {NAT} + {N0}) 

+mT[CM]T[Oo}T({A}[Cm]{wm} + i[A][*][C^]{u*} + \[A][6)[CM]W} 

+[A}[9] [C+j] {wb0} + [A}[9] [CM] WO} + [B)[Cb\W} - {NAT} + {N0}) 

+{mT[Cbf([B}[Cm}{wm} + \[B][9][C^b]{wb} + \[B][e)[CM]W} 

+[B][9] [C#] {wb0} + [B}[9] [CM] WO} + \D][Cb]W} - {MAT}) 

+a{8wbf [C7b]T ([As] [Cyb] {wb} + [As] [C^] W}) 

+a{6^}T[Cli,]T([As][C,b]{wb} + [As}[C7i}]W})}dA 
(2.41) 
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and from Eq.   (2.25): 

SWext = J { {{8wh}
T{Hw} + {W}T{HW^}) 

A (2.42) 

(p(x,y,t;\) - ph([Hw\{wb} + [Hwil,\{i>}^ 

-{Swm}T({Hu}[Hu\{wm}) - {6wmf{{Hv}[Hv\{wm})}dA 

2.6 Element Equations of Motion 

The application of the principle of virtual work to derive the element equations of 

motion and the element matrices is lengthy and tedious. There are total 56 terms in the 

expressions of virtual work. The equations of motion for the MIN3 plate element can 

be written in the matrix form as 
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"0       0 0 

0     [k]i     [k]^m 

.0      [*U       Wm. 
+ 

[ko\b        [kolbip      [kolhm 

[kotyl      \ko]^      [ko]^m 

.[ko)mb    [ko\~,        0 

[fcjVArlj      [kNAT]bTp     0 

[kNAT^b      [kNAT]^      0 
0 0 0 

^o\mt 

[kNo\b      [kNo\b^ 

[kNo]^b      [kNo]^ 
0 0 

<Wh   ^ 

Wm 

+ 
0 

[nlW 

Mlim 
+ 

[nl0]6     [nl0] 

Mo] 
0 

hi 
6^ 

0\lj}b 

"Wb   ^ 

"Wb 

<   ff)        > 

(Wb   ~\ 

+ ~ 

+ r 

hljVm]*, 

[nlNm^b 
0 

[«2]j     [n2]^    0 
[n%h     [r»2]^     0 

0 0       0 

raliVm]&^    0 
[nljVm]^     0 + 

0          0 

[nlNb]b 

[n^Nbl^b 

[nlNb]b<j> 

0 

(Wb   } 

0 > + a 
0 0       0 

< 

(Wb   y 

* 

{wm ) 

< Wm / 

(wb  \ 
> Wm ' 

+ 
TO k TO 6^ 

\m ipb TO 

0 
0 

[TOL 

v> 

l.wli 

{Mi 

{ftJt 

10 

> + < 

0 

{PAT},/, 

>{PAT}m ) 

{PATo} 

> + < {PATolv, 

lo 

b> f° '{PNoo)b ' 

v. ► + < 0 > + < {PNoo}$   > 

> ^ {PNo}m < .0 

(2.43) 
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or in the short form, 

([k] + [k0]-[kNAT]+[kNo]){w} 

+ -([nl] + [nl0] + [nlNm] + [nlNb]){w} 
(2.44) 

+-[n2]{w} + a[ks]{w} + [m]{w} 

= {Pp(t)} + {PAT} + {PATo} + {PNo} + {PNoo} 

where [m], [k] and {p} denote the element mass, linear stiffness matrices and load 

vector, respectively, and [nl] and [n2] denote the first and second-order nonlinear 

stiffness matrices, respectively. The subscripts b, ij> and m denote the transverse, 

rotation and in-plane components, respectively. The subscripts s, o, No, NAT, Nm, 

Nb denote the stiffness matrices which are due to transverse shear, w0(x,y), {No}, 

{N^T}, {Nm}(=[A]{e£j}), and <Nb}(=[B]{/c», respectively. The expressions for element 

stiffness, nonlinear stiffness, mass matrices and load vectors are given in the Appendix B. 

2.7 Grazing Acoustic Wave 

The grazing incidence acoustic wave applied on a plate can be treated as an extension 

of the plane wave which includes in the travelling wave a combination of wavelengths 

such that the pressure at any one point is random but the whole pattern moves in the 

direction A with wave traveling speed c. The pressure distribution on a plate is then 

given by [Clarkson] 

CO 

p{x,y,t) = -L   f P(a0eiw(*-tsinA)<2a, (2.45) 
—CO 

where x is the coordinate along the wave travelling direction, and assume that the 

pressure distribution is independent of y. This model is suitable to represent the waves 

in the progressive-wave test facility. 
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For a random plane wave, the pressure at a point can be written in the Fourier 

integral form: 

00 

Pit) = i J Pi^e^du, (2.46) 

Physically, this is equivalent to representing the oncoming wave as the sum of an infinite 

number of waves of different wavelength. 

The nodal force vector of an element can be calculated as: 

{Pp{i)} = J{Kw}p(x,y,t;\)dA 

00 

= _L   / p(w)e'«* [e-'^shlX{Rw}dAdiJ 

(2.47) 

Let 

(FH) = J e       <= '{R^dA (2.48) 

then we have 
oo 

{*(*)} = ^ J PMiYWe^du, (2.49) 

where {Rw} is defined in Eq.  (2.3) as 

rwi 
w (x,y,t) = {RW}   < > = {Hw(x,y)f{wb} + {Hwi3y W (2.50) 

IW   J 
and the nodal displacement components {wi} and {tp} are defined in Eq. (2.2). Therefore, 

P(u){Y(u)} is the Fourier transform of {pp(t)}. The spectrum density of {pP(t)} is 

(Clarkson, 1986) 

7T 
{5/H}=rlim^|P(o;){yH}|2 

= Sp(u)\{Y(u)}\2 
(2.51) 
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{No} known 

Fig. 2.1 An Initially Deflected and Stressed Plate 

z,w 

*► x,u 

Fig.   2.2 A Typical MIN3 Element. 
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Node 3(x 3,y    ) 

Nodel(x  fy ) 

Node 2 
(x 2>y 2) 

Fig. 2.3 A Mindlin Triangular Plate Element 

Fig.   2.4 Grazing Acoustic Wave 

^ 
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Chapter 3 

SOLUTION PROCEDURE 

3.1 Static Component and Dynamic Component 

The system equation of motion can be written as 

[M]{w) + ([K] + [K0] - [KNAT] + [KNo]){W} 

+i[Nl]{W} + ^{N2]{W} + a[Ks]{W} (3.1) 

= {Pp(t)} + {PAT} + {PATo} + {PNo} + {PNoo} 

where {W}T = [Wb, $, Wm\. The subscripts s, o, No, NAT, Nm, Nb denote the stiffness 

matrices which are due to transverse shear, w0(x,y), {No}, {N^T}, <Nm}(=[A]{e^}), 

and {Nb}(=[B]{/c}), respectively. And 

Wi]=   J2  (M] + Mjvm] + MM] + Mo]) (3.2) 
assembly 

In order to solve the system equation of motion Eq.  (3.1), an innovative solution 

procedure is described as follows. First, the response is assumed to be the sum of {W}s 

and {W}t, i.e.  {W} = {W}s + {W}t, where {W}s denotes the time-independent or 

static component and {W}t the time-dependent or dynamic component. The displacement 

{W}s represents a stable static equilibrium position due to thermal load and the mean 

of the random excitation E[{Pp(t)}]; while {W}t represents the zero-mean random 

response.  Substituting {W} into Eq.   (3.1) and regrouping the terms, the equation is 

of the form F({W}8) = G({W}t) with 

F({W}S) = ([K] + a[Ks) + [K0] - [KNAT] + [KNo}){W}s 

+ 1öWl}s{W}3 + ImhsiWh ~ {PAT} - E[{Pp(t)}] (3"3) 
2L     JSL    Js ' 3' 
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G({W}t) = [M]{w}t + ([K] + a[Ka] + [K0] - [KNAT] + [KNo]){W}t 

+K[AriL+l[N2]ss){w}t+^[m]t{ w}° 
+\[Nl]t{W}t + l([N2]3t + [N2]t3 + [N2]tt)({W}s + {W}t) 

-{Pp(t)} + E[{Pp{t)}] 

In Eq. (3.3), the load vectors {PATO}, {PNO} and {P^oo} are temporarily dropped. The 

left-hand-side of the equation, F({W}3), is independent of time t; while the right-hand- 

side, G({W}t), is time dependent. Therefore, the only possibility for both F and G to 

exist is that both F and G equal to zero, and the following two equations are thus obtained: 

([K] + a[Ks) + [K0] - [KNAT] + [KNo]){W}s 

+l[Nl]s{W}3 + \lN2UW}, = {PAT} + E[{Pp(t)}) (3'5) 

[M]{w) + ([K] + a[Ks] + [K0] - [KNAT] + [KNo]){W}t t     -   ■       -----   ---    -   -----    st 

+l[Nl]t{W}t + ±([N2}3t + [N2]ts + [N2]tt)({W}s + {W}t) 
(3.6) 

= {Pp{i)} ~ E[{Pp(t)}] 

where the subscript [ ]s denotes that the corresponding stiffness matrix is evaluated with 

the static deflection, and [ ]t is evaluated with the dynamic deflection. 

Examination of Eqs. (3.5) and (3.6) reveals that both equations are nonlinear. The 

Newton-Raphson iterative method is used to determine {W}3 from Eq. (3.5). Combined 

normal mode method and equivalent linearization technique are then applied to Eq. (3.6) 

to obtain {W}t. 

In Eq. (3.6), the matrix [Nl]s which is ignored in the reference (Locke, 1988) is due 

to the membrane component of thermally postbuckling displacement {WAT}- The term 

[N2]ss{W}t is due to the combined effect of {WAT} and {WAT}, which has a different 

coefficient in Locke's formulation(1988). 
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When comparing with the Sequential Load method(SQL)(Locke, 1988), this 

Simultaneous Load method(SML) is much logical mathematically and straightforward, 

it is then easier to formulate nonlinear problems with combined loading. The solution 

procedure itself can take care of the inter-dependence between the thermal effects and 

the acoustic-structural response. In the SQL method engineering judgment is essential, 

otherwise some terms might be missed. 

3.2 Thermal Buckling and Large Thermal Deflection 

To obtain the critical buckling temperature change ATcr (x, y) for a plate, it is assumed 

that the prebuckling configuration is flat and without coupling between bending and 

extension, then the linear system equation in membrane 

[Km){Wm} = {PmAT} (3.7) 

is solved for an assumed temperature distribution AT first. Once {Wm} is obtained, one 

can calculate the first-order nonlinear stiffness matrix [NlNm]. Because the nonlinear 

term due to transverse deflection does not exist, the stability equation of the investigated 

plate becomes 

fAwn 
m}-[KNAT] + [NlNm}){ =o (3.8) 

A$ 

where 

[Kb] 
0     0 
.0   K+\ 

+ Ö Ksb      Ksbiß 

Ksijjb    Ksi> . 
(3.9) 

Examination of Eq. (3.8) reveals that [Kh] is independent of temperature change, and 

(-[KNAT] + [NlNm]) is proportional to temperature change. Therefore Eq. (3.8) 

describes an eigenvalue problem. The critical buckling temperature change is 

ATcr = A2AT (3.10) 
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where Ai is the lowest eigenvalue. For a non-symmetrically laminated plate, the ATcr 

from Eq. (3.10) is referred as reference temperature, ATTef. 

The iterative solution scheme is to seek a solution {W}s of F({W}S) = 0. The 

Newton-Raphson iterative method is a well established procedure for solving time- 

independent nonlinear problems. This method involves a repeated solution of the equation 

for the i-th iteration 

[K]Tii{AW}s.+1 = {AP}S!i (3.11) 

Then [K]T>i+1 and {AP}S)i+1 are updated by using {W}s-+1 = {W}^ + {AW}S-+1. 

The solution process seeks to reduce the load imbalance, and consequently {AW}S, to 

a specified small quantity. The tangent-stiffness matrix is determined from 

'MTWH*1^1*™ (3,2, 
+ [K„c] - [KNAT] + [ATI], + [N2]„ 

and the load imbalance vector is 
{AP}S = {P}s - ([K] + a[K,] + [K0] + [KNo] 

- [KNAT] + l[Ni]s + limuiw}, (3-13) 

where {P}s = {PAT} + E[{Pp(t)}]. The linear buckling mode shape from Eq.(3.8) 

multiplying a scale factor is usually taken to be the initial trial solution of Eq. (3.11). 

33 Nonlinear Random Response 

After solving {W}s from Eq. (3.5) and evaluating the matrices [JV1]8 and [N2]83, 

Eq. (3.6) is ready to be solved. Firstly, Eq. (3.6) will be reduced to a system of coupled 

nonlinear modal equations with reduced degree-of-freedom. The linear vibration modes 

of the deformed structure are used to transform the system equation of motion to modal 

coordinates. The resulting nonlinear modal equations of motion are then linearized using 

the equivalent linearization method. Finally, in order to uncouple the linearized equations 

of motion, a modal transformation is used once more. 
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Coupled nonlinear modal equations 

From Eq.(3.6), the linear frequencies and mode shapes of the deformed structure can 

be obtained by solving the eigenvalue problem 

([K] + a[K3] + [K0] - [KNAT] + [KNo] + [Nl]s + [N2]„){<fin 

where it is assumed that 

(3.14) 

Wl],{W}t = ±[Nl],{W}t + \[Nl]t{W}, (3.15) 

and 

m}S3{W}t = l[N2}ss{W}t + i[iV2U^}s + \mUWh (3.16) 

Actually, from numerical test this assumption doesn't introduce significant error. Solving 

Eq. (3.14), the truncated modal matrix is given by 

M = [Wi,W2,---,{fe] (3.17) 

where JV is the number of modes to be used for the analysis of Eq. (3.6). Now {W}t 

can be written in terms of the modal amplitudes as 

N 

W, = M{?} = £>}»?» (3.18) 
n=l 

Using Eq. (3.18), the first-order nonlinear system stiffness matrix can be written in terms 

of {q} as the sum of first-order nonlinear system modal stiffness matrices 

[M]* = E?»[M]iB) (3-19) 

and 

[Nlp=    J2   ([nl] + [nlNm) + [nl0] + [nlNb}p (3.20) 
assembly 
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lWl]t{W}s = \[Kl]s{q} (3.21) 

i([JV2]„ + [N2]ts){W}s = \[K2)st{q} (3.22) 

\m\n{W}a = i £ qn[K2)${q} (3.23) 

where the ith column in [Kl]3, [K2]st and [K2][f are 

{Kl}si = [Nlf{W}3; {K2}sti = ([N2]st + [N2]tsf{W}s 

(3.24) 
{#2}$ = [N2]${W}t 

The second-order nonlinear system stiffness matrices as the sum of second-order 

nonlinear system modal stiffness matrices are 

[N2}st = JTqn[N2]W (3.25) 
n=l 

and 

[JV2]S>=    X]   [n2f3f (3.26) 
a-ssemWy 

JV 

[^2]f5 = ^?n[iV2]LK) (3.27) 
n=l 

[N2]<£>=   Y,   rf (3.28) 
assembly 

similarly 
TV    JV 

n=l r=l 

[^2]{?r)=   £   [*2]{r> (3.30) 
aasemMj 

where superscripts [ ](n) and [ ](nr) denote the corresponding nonlinear modal stiffness 

matrix is evaluated with the modes {<f>}n and {<ß}r. 
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Substituting these nonlinear modal stiffness matrices into Eq. (3.6), a set of nonlinear 

coupled modal equations of motion can be expressed as 

[<t>]TG({W}t)=\M\{q}+\Kknear{q} 

+ [*f (\[Kl], + \[K2]st){q} + \mTJ2^[K2p{q} 2 

N 
n=l 

+ WT E *(W' + kim& + >il"0 MM       
(3'31) 

ra=l 

^/l 
N    N 

+wT u E E ?»?r[tf2]|r> MM - {/> = o 
n=lr=l 

where the modal force vector and the diagonal modal mass and linear stiffness matrices 

are 

{/} = [4>\T{P}t 

\M\ = [<t>]T[M][<f>] = 
mi 

0 

0 

(3.32) 

(3.33) 

\K\ linear = [4>f ([K] + a[Ks] + [K0] - [KNAT] + [KNo] + |[M], + |[tf 2]„) [<f>] 

'uj\ra\ 

0 

0 

uNmxJ 
(3.34) 

{P}t = Wm-E[{Pp(i)}] (3.35) 

and [ J denotes a diagonal matrix. Equation (3.31), is a set of coupled nonlinear modal 

equations, it is then linearized by using the equivalent linearization method (Atalik and 

Utku, 1976, and Roberts and Spanos, 1990). 

Equivalent linearization and coupled linearized modal equations 

Rewriting Eq. (3.31) in the form 

{9({q})}+\M\ {?} = {/} (3.36) 
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The corresponding linear form of Eq. (3.31) can be expressed as 

[K]u)+m {?} = {/} (3.37) 

where [R] is an equivalent linear modal stiffness matrix. The error vector involved 

in using Eq. (3.37) instead of Eq. (3.36) is given by the difference between the two 

equations as 

{«} = {<?({?})} - [K]{q] (3.38) 

The equivalent linear stiffness matrix [K] can be found by requiring that the mean square 

value of error be a minimum, thus we have 

dE {ef{e} 
dKn 

= 0 n,r = 1,2,...,JV (3.39) 

Substituting {e} and {g({q})} into Eq. (3.39), the equivalent stiffness matrix [K] can 

be determined from the equation 

E {q}{qf   [K] = E  {q}{9} (3.40) 

{q}{9f] =E[{q}{q}T] \K\linear + E [{q}{qf 
T 

[4>]T(\[Kl]s + UK2]st 5' 

The right-hand side of Eq. (3.40) can be evaluated as 

E   

n 

+ J2E[qn{q}{q} 
n 

+ \jlY,E{^r{q}{q}T) [[<t>]Tmtr)[<t>] 
n      r 

= E[{q}{qf] \K\linear+E[{q}{q}T] [[tf (±[K1], + \[K2]3t 

+ lY,Y,Elwr{q}{q}T}([K2}W)T 

[^^(ItiVl]^ + |[AT2]^> + |[iV2]^)[^] 

(3.41) 
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since E <ln{q}{q}J 0 for Gaussian process, and 

(3.42) 

If the covariance matrix E {q}{q}     is known, the equivalent linear stiffness matrix [R] 

can be determined from Eq. (3.41). However, {?} has to be obtained first from Eq. (3.37) 

and [K] is not known. In order to solve Eq. (3.37), modal coordinate transform is used 

once again with an iterative scheme. 

Uncoupled linear modal equations 

The modal transformation is used once more and it is determined from the equation 

[£]{<£} =n2rMj{<£} (3.43) 

and the modal transformation matrix is defined as 

Equation (3.37) thus becomes a set of uncoupled modal equations 

(3.44) 

where 

r}j + ^3+^h = fj      i = l,2,.-.,iV (3.45) 

rrtj 
oT 

rrij 

(3.46) 

(3.47) 

and (rjj = 2C,unr)j is the modal damping term which has been added to Eq. (3.45), and 

uii is the first linear frequency of the deformed system, which is obtained from Eq. (3.14). 

Solutions for the uncoupled modal equation of motion Eq. (3.45) for the case of 

Gaussian white noise uniform random load p(t) are given in the following form 

E[r,m] = Spfjkljk (3.48) 
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where 
00 

Ijk =   / Hj(u)Hk(-L})du = 
4^ 

(3.49) 
—00 

(3.50) 

where 

Hj{u) = tij-ut + itu, 

and Sp is the double sided loading spectrum density. Using Eq. (3.44), the covariance 

matrix of the coupled modal amplitude becomes 

E {q}{qy E 

<t> 

ivHriY <!> 

<t> 
(3.51) 

(3.52) 

The deflection spectrum density is as follows: 

Gwm = sPfjfkHj(u)Hk(-ui) 

[Gw] = [<j>] <f> [Gnink] <j>   [4>] 

For grazing incidence, the covariance terms for the case of ideal white noise excitation 

can be expressed as 

oo 

E[vM = 2 j Spi^lZ^Zki^WHji^Hki-^lduj (3.53) 

where 

1   (~,*\T 

rrij y.   ) j 
(3.54) 

and 

{!»} =    J2   /[cos( 
element 

u>xs'm6\      . .   /cjxsinö' 
     — i sm      

Hi, 

H, 
dA        (3.55) 

Wij) 

In order to calculate E[r]jrjk] from Eq. (3.53), a simple numerical integration method 

is used, the cut off frequency is 1.5 * fijv. 

37 



Iterative solution procedure 

Therefore, Eqs. (3.40), (3.41) and (3.51) can be used to determine [/?] and 

£[M{?} j. However, since each of these quantities is dependent on the other and 

these equations are nonlinear, consequently, they must be solved by an iterative method. 

The first approximation of [R] and E {q}{q}T   is obtained by neglecting the cross 
rp' 

terms in £[{?}{?} J, (i.e. E[qnqr] = 0 forn ^ r), and assuming all the equations in 

Eq.(3.37) are uncoupled. The diagonal terms in the equivalent linear stiffness matrix [R] 

can be expressed from Eqs. (3.40) and (3.41) as 

Knn=Kn + 3(K2nn)(nn>E[q2
n] (nn)zrr„2i (3.56) 

where (K2nnf
nn> are the diagonal terms of the second-order nonlinear stiffness matrix, 

the subscript nn denotes the diagonal term and the superscript (nn) denotes the term is 

due to the n-th mode {<f>}n. From Eq. (3.43) ü2
n can be written as 

>2 _ -Knn 2 
If on 

(3.57) 

and E[q2] can be found from Eq. (3.48) for this uncoupled first approximation (qn = 

9«, fn = fn/mn) to be 

E[ql]=SP 
II  f   * 

Using Eqs. (3.57) and (3.58), E[q*] can be determined to be 

(3.58) 

where 

E[q2
n] = (\/£2 + 4C-5)/2 

B = Kn/3(K2nn)W 

C = Spf2
nir/Hmn(K2nn)W 

(3.59) 

(3.60) 
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To begin the iteration process for the cross terms are no longer neglected, the cross 

correlation terms E[qnqr] can be evaluated using Eq. (3.48) with Eq. (3.49) and (3.51). 

Using Eqs. (3.40) and (3.41), the equivalent linear stiffness can be computed. After 

obtaining [R], a new iterative cycle begins. The iterative process goes on, until some 

convergence criteria are satisfied, EW] — ^~& ^or ^ n' t*ien *e iteration is 

terminated. The covariance matrix can be found from 

E {W}t{W}T
t     = [<f>]E {q}{qf  [<f>] (3.61) 
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3.4 Strain Formulas 

After the displacements for a given combination of thermal and acoustic load 

condition are known, the element strains can be calculated using Eqs. (2.11), (2.12), 

(2.13) and (2.14). Because the displacements consist of two parts, dynamic and static. 

The strains can be expressed as 

{e} = {e°} + z{K} = {e}s + {e}t (3.62) 

where 

and 

where 

{7} = {7}s + bh 

{«}. = [Cm]{wm}s + i[*],([C^] W, + [CW] W,) 

+W,([c*i]{mo}+[CH,]{1>o}) + z[ci]{ii>}a 

N N    N 

ieh = E WijV + E E iehjkWk 
3=1 j=i k=i 

Wli = [Cm){4>m}j + [eijdC^iwbo} + [Ci)il]{lß0})+z[Cb]{(ßi>}j 

tew = \[^([^b]{hh + [CnHtM 

[&h = 
4>bj,x     0 

0 (f>bj,y 

<j>bj,y     <j>bj,z 

For the shear strain, 

h}s = [c7b]{wb}s + [c7i,]{ip}s 

and 

(3.63) 

(3.64) 

(3.65) 

(3.66) 

(3.67) 

(3.68) 

(3.69) 

* N 

Mt = E (PTJ Mj + [CT*] {<!>*},)* = E Wy* (3.70) 
3=1 j=i 
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Using the above {e}s and {e}t formulation, the stain vector can be expressed as 

i=1 j==1 (3.71) 
N    N    N    N 

+ E E E E {thijtäniEbww] 
t=i i=i jfc=i ;=i 

and 

where 

£ {7},{7}f]=EE{7}ii{7}^te] 
i=i i=i 

(3.72) 

EkiWkqi] = £[?.•?;]£[?*«] + £fo?*]*ta] + E[qiqi)E[mk] (3.73) 
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Chapter 4 

NUMERICAL RESULTS AND DISCUSSION 

4.1 Formulation and Computer Program Validation 

4.1.1. Twisted Ribbon Tests 

A cantilevered, thin rectangular plate subject to a twisting moment at the free 

end is regarded as a severe test for plate bending elements under large aspect ratio 

distortions(Robinson, 1979). Herein, the mesh A (Figs. 4.1 and 4.2) results has been 

repeated. The tip deflection results are compared with the results produced by the popular 

nine degrees-of-freedom, thin triangles, namely, BCIZ1, HSM, HCT and DKT, are shown 

in Figs. 4.1 and 4.2. In this comparison, the MIN3 which is adopted for the present 

random analysis appears to outperform the other triangular elements. 

4.1.2. Static Analysis of a Rhombic Cantilever 

This problem deals with the analysis of a rhombic cantilevered plate subjected to a 

uniform load. The geometry and material properties are given in Figure 4.3. Experimental 

results of this problem are available for comparison (Clough and Tocher, 1965). A 4 by 

4 mesh (32 elements) is used and the results obtained with MIN3 and test are given in 

Table 4.1. It is observed that even with this coarse mesh, the MIN3 element gives results 

in good agreement with the experimental values (Batoz et al., 1980). 
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4.1.3. Thermal Buckling and Post Buckling 

For this problem, a square plate with two boundary conditions is calculated, one is 

simply supported and the other is clamped. The results are compared with the results by 

Paul (1982) and Singh (1993), the agreement is very good. 

For the simply supported square plate, the results are given below: 

ATcr = 1.777°^ 

AT WAT <41) 
2.0     —r2- = 0.852 

ATcr h 
For the clamped support square plate, the following is obtained 

ATCT = 4.67°.F 

AT WAT 
1.19     —F- = 0.58 

ATcr h 
AT      , An     WAT    „ or„ <4-2) 

AT„ = L4°  ir=0-852 

AT
  = 1.62     ^1 = 1.054 

ATCr h 

4.1.4. Random Response and Strain Validation 

The plate used by Chiang (1988) was analyzed as a validation example. The plate 

is of the following dimension and material properties: 

Young's modulus E = 10.5 x I0epsi 

mass density p = 0.2588 x 10-3Ibsec2/in* 

damping ratio £ = 0.01 

length a = 15m 

width b = Ylin 

thickness h = 0.04in 

Poisson's ratio v = 0.33 

The results obtained by the present study and Chiang are shown in Table 4.2. Because 

the elements used are different, the difference of strain values for N=4 is relatively large. 

The others are close. 
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4.2 Thermal Buckling and Postbuckling Results 

In order to understand the response of a plate to combined acoustic and thermal load 

better, the thermal buckling and postbuckling behavior of a composite plate is studied 

in this section. Seven cases are investigated. The graphite-epoxy material properties 

are taken as: 

Young's moduli El = 22.5 x 106, E2 = 1.17 x 10 V 

Shear moduli G2Z = 0.4 x 106, G12 = G13 = 0.66 x 10 V 

Poisson's ratio p12 = 0.22 

Therm, expan. coeff. ai = _Q.04 X 10-e/F°,a2 = 16.7 x lO"6/^0 

The finite element results are presented as follows: 

4.2.1. Effect of Extension and Bending Coupling 

The bending and extension coupling is studied first. A two-layer Gr/Ep rectangular 

laminate ( 15x12x0.048 in.) with the stacking sequence of (0/90) is considered. For 

this case the extension and bending coupling matrix [B] is not equal to zero, therefore 

the critical buckling temperature does not exist. When the laminate is subjected to 

the temperature change, the bending deflection occurred immediately. The postbuckling 

deflection is shown in Fig. 4.4 for the simply supported boundary condition. The ATref 

used in the figure is 13.37F0 only for reference purpose, and it has no physical meaning. 

In the calculation, the full plate is discretised to 128 elements or 8x8x2 mesh. From 

the figure one can see that there is no bifurcation critical temperature. 
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4.2.2. Isosceles Triangular Plate 

The second problem investigated is an isosceles right triangular plate with symmet- 

rical stacking sequence of (0/45/-45/90)s, the length of two perpendicular sides is 12 

in. The plate is simulated by 144 elements. In Fig. 4.5, the postbuckling behavior is 

shown for simply supported and clamped boundary conditions. These two conditions are 

theoretically idealized, the boundary conditions in the real world are somewhere between 

them, therefore they can be considered as the upper and lower bounds. 

4.2.3. Effect of Shear Deformation 

The plates studied are the same as the first case, i.e. 15x12 in., but the stacking 

sequence is (0/45/-45/90)s. The ratio of length to thickness investigated are a/h=312.5, 

200,100, 50 and 20. The critical buckling temperature is shown in Fig. 4.6. As expected, 

the results show that when a/h is greater than 100, the shear deformation can be neglected. 

But for thick laminates the shear deformation is important. 

4.2.4. Effect of Number of Layers 

The dimension of the plate studied in this problem is 15x 12x0.08 in., and the mesh 

used is 8x8x2 (128 elements). The boundary support condition is simply supported. 

The plate consists of (45/-45)n. In Fig. 4.7, it is shown that the increase of number of 

layers reduces the response due to the reduction of the extension and bending coupling. 

4.2.5. Postbuckling Mode Change 

The fifth problem studied is a 36x12x0.048 in. long rectangular laminate, the 

stacking sequence is (60/-60). The full plate is modeled by a 18x6x2 mesh i.e. 216 
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elements. The results are shown in Figs. 4.8 and 4.9. The laminate is subjected only 

to a uniform temperature change without transverse mechanical load. For this load case, 

the postbuckling deflection is close to a (3,1) mode shape at low temperature. When 

the temperature change AT is greater than 20°F, there is a mode shape change and the 

deflection is close to a (4,1) mode. 

4.2.6. Thermo-Mechanical Postbuckling 

The plate investigated in the sixth problem has the same dimension and stacking 

sequence as the previous problem. The mechanical load of uniformly distributed 0.01 

psi is applied simultaneously with the uniform temperature change. Figures 4.10 and 

4.11 show the thermo-mechanical deflection and the deflection shapes. It is interesting 

to note that the maximum deflection exhibits slightly soften behavior at low temperature 

change due to increasing in thermal compressive in-plane forces. The deflection shape 

at this low temperature is a combination of (1,1) and (3,1) modes due to the presence of 

mechanical load. However, the deflection at the high temperature is changed to a (5,1) 

dominated mode shape. The mechanical load is to simulate the static pressure difference 

applied to the aircraft skin panels. 

42.7. Effect of the Skew Angle of the Plate 

In this problem, the skew angle ß (see Fig. 4.12) of the plate varies, but the height 

(12 in.) of the parallelogram keeps the same. The length of the plate is 15 in. and the 

thickness is 0.048 in. The height of the plates studied is equal to 12 in. Fig. 4.12 shows 

the postbuckling response. When the skew angle ß increases the deflection reduces, this 

is due to that the length of 90° fibers are relatively shorter thus making the plate suffer. 
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4.2.8. Conclusions 

Seven problems were studied in this section. The extension and bending coupling 

stiffness matrix makes the plate bending out-of-plate immediately when the plate is heated 

without prebuckling stage. The most interesting thing in this study is the mode shape 

change and the described solution procedure can automatically obtain the mode changing 

of postbuckling deflection as long as the incremental step of temperature change is small 

enough regardless of the presence of mechanical load. This study demonstrated that the 

finite element method can deal with different planforms, various boundary conditions as 

expected. 

4.3 Nonlinear Random Response 

The numerical results of random response to acoustic pressure only are presented in 

this section. A eight-layer rectangular laminate ( 15x12 in.) with the stacking sequence 

of (0/45/-45/90)s is considered first. The plate is clamped at all four edges and with 

immovable inplane boundary conditions. Hereafter it is referred to as Panel 1. The 

material properties, mass density, and damping ratio are taken as: 

Young's moduli Ex = 22.5 x 106, E2 = 1.17 x itfpsi 

Shear moduli G23 = 0.4 x 106, G12 = Gu = 0.66 x 106psi 

Poisson's ratio un = 0.22 

mass density p - 1.45 x 10~4/6 - sec2/in.4 

damping ratio ( = 0.02 

The root mean square (RMS) of the maximum deflection response to a normal incidence 

is shown in Fig. 4.13. The corresponding RMS maximum micro strain is shown in Fig. 
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4.14. The response consists of symmetrical modes, for this laminate the 2nd, 3rd and 

4th modes are anti-symmetric, they are not appeared in the response. The frequencies 

are shown in Table 4.3. Figure 4.15 shows the spectrum density distribution of response 

vs. frequencies. When the applied acoustic load is low, the response is linear. The peak 

of curve is very close to the natural frequencies. But at high pressure levels the peaks 

are shifted up, when the SPL reaches 130 dB, the first peak appears at 358 Hz. 

The second example is the same as the first one except the stacking sequence, it 

is a (0/90) two-layer laminate. This panel is referred to as Panel 2. The root mean 

square of the maximum response to a normal incidence is shown in Fig. 4.16. The 

corresponding RMS micro strain is shown in Fig. 4.17. Fig. 4.18 shows the spectrum 

density distribution of response vs. frequencies. 

The third example is a swept rectangular plate as shown in Fig. 4.19. The plate 

consists of eight-layer laminate as same as the first one. It is referred as Panel 3. The 

root mean square of the maximum response to a normal incidence is shown in Fig. 4.20. 

The corresponding RMS micro strain is shown in Fig. 4.21. Figure 4.22 shows the 

spectrum density distribution of response vs. frequencies. 

4.4 Acoustic-Thermal Response 

The numerical results presented in this section concern with the response to combined 

acoustic and thermal loads. 

4.4.1. Effect of Number of Modes 

In order to evaluate the convergence characteristics of the present modal analysis 

formulation and determine the required number of modes for reasonable accuracy, an 

eight-layer Gr/Ep rectangular laminate (15x 12 in.) with the stacking sequence of (0/45/- 

45/90)s is analyzed by mode number N=l, N=2, N=3 and N=4. Anti-symmetrical modes 
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are not included. The plate is clamped at all four edges and with immovable inplane 

boundary conditions (u=v=0 at all four edges). The full plate is modeled with 8x8x2 

mesh or 128 MIN3 elements. For convenience, this plate is referred to as the baseline 

configuration. The material properties, mass density, and damping ratio are taken as: 

Young's moduli E1 = 22.5 x 106,E2 = 1.17 x 106psi 

Shear moduli Q2Z = 0.4 x 106, G12 = G13 = 0.66 x 106psi 

Poisson's ratio vu = 0.22 

mass density /> = 1.45 x 10_4/6 - sec2/in.4 

damping ratio ^ = 0.02 

The result of RMS(Wmax/h) without temperature is shown in Table 4.4. The first 12 

mode characteristics are (1,1), (1,2), (2,1), (2,2), (1,3), (3,1), (2,3), (3,2), (1,4), (4,1), 

(4,3) and (3,3). The first 12 frequencies are shown in Table 4.5. The critical buckling 

temperature change is 37.38°F. The result shows that use of three modes obtained satisfied 

displacement results. Therefore, in the following calculation, three modes are used. 

4.4.2. Effect of Thermal Load 

The above configuration is analyzed again with AT/ATCT =0.0, 2.0, 3.0. For 

simplicity, this panel is called the baseline configuration. The root mean square (RMS) 

of the maximum deflection response to a normal incidence and temperature change is 

shown in Fig. 4.23. The corresponding RMS maximum micro strain is shown in Fig. 

4.24. The response consists of symmetrical modes. For this laminate the 2nd, 3rd and 

4th modes are antisymmetric, and they do not appear in the response. The frequencies 

are shown in Table 4.4. Figure 4.25 shows the spectrum density distribution of response 

vs. frequencies at AT/ATcr =0.0 and 3.0 and 130 dB. When the applied acoustic load 

is low, the response is linear. The thermal loads increase the nonlinear stiffness and the 

response is reduced due to the large temperature rise. The peak of the curve is very close 
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to the natural frequencies. But at high pressure levels the peaks are shifted up, when the 

SPL reaches 130 dB and AT/ATcr = 3.0, the first peak appears at 2248 rad/sec. 

For the simply supported boundary condition, the displacement response is much 

larger than clamped case, but the strain is kept at about the same amount, the results 

for the simply supported condition are shown in Figs. 4.26, 4.27 and 4.28. The strain 

with temperature (Figs. 4.24 and 4.27) could be smaller or larger than the one without 

temperature. It illustrates that two effects are occurred. The thermal postbuckling 

increases the nonlinear stiffness which reduces the RMS deflection, the strain component 

due to the RMS deflection is thus also reduced. On the other hand, the thermal strain 

increases the strain component. 

4,4.3 Antisymmetric Cross-ply Laminate 

The material properties and dimension of this clamped antisymmetric cross-ply 

laminate (0/90) are the same as the baseline configuration. Figures 4.29 4.30 and 4.31 

show the mode shapes of this panel at AT=0, 97.972 and 149.688°F, respectively. In these 

figures two features should be noticed: the mode sequence is changed with temperature 

rise; and some mode shapes are not exactly symmetric or antisymmetric as in the case 

of isotropic material. Figure 4.32 shows the displacement response while Figure 4.33 

shows the micro strain distribution vs. sound pressure level. 
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4.4.4. Skewed Panel and Non-uniform Temperature 

The planform of this panel is shown in Fig. 4.19. the material property is the same 

as the baseline configuration. The non-uniform temperature change is that at the edge 

grid points the temperature change is zero, at interior grids is uniform. The boundary 

condition is clamped. The results are shown in Figs. 4.34 and 4.35. The critical buckling 

temperature changes for uniform and non-uniform temperature distributions are 67.36°F 

and 76.32°F, respectively. It can be seen from the figures that the responses and strains 

for uniform temperature and nonuniform temperature have very little difference. This 

illustrates that the temperature gradient along the edge has little influence on random 

responses. 

4.4.5. Grazing Incidence Wave 

The plate studied in this case is the same as the baseline configuration. But the 

boundary condition is simply supported for transverse displacement and immovable for 

in-plane displacements. The thickness of the plate is 0.048 in. The dimension is 15 in. 

by 12 in. The stacking sequence is (0/45/-45/90)s. 

The result of this example is very interesting. Because the acoustic wave is travelling 

along the positive direction of x axis with a speed c, the acoustic pressure on the plate 

along the x-axis is not uniform and the antisymmetric modes about y-axis participates 

in the response of the plate. Therefore the maximum deflection point moves forward 

slightly as shown in Fig. 4.36. The deflection spectrum density is shown in Fig. 4.37. 

4.4.6 Effect of Initial Imperfection 

If the plate has some initial imperfection in deflection, the nonlinear stiffness due to 

initial deflection reduces the response as compared to flat plate. It is also stiffer than 

thermal postbuckling deflection, assuming that they have the same maximum deflection 

51 



as shown in Fig. 4.26. For thermal postbuckling, the panel is also subjected to certain 

thermal stress. For initial deflection, the plate has only geometric stiffness which reduces 

the random response; while thermal postbuckling plate has thermal stresses and thermal 

deflection. The results are shown in Figs. 4.38, 4.39 and 4.40. 
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Table 4.1 Results for a rhombic cantilever plate 

Deflection at locations (in.) 

1 2 3 4 5 6 

MIN 3 result 0.263 0.178 0.108 0.103 0.048 0.019 

Experiment value 0.297 0.204 0.121 0.129 0.056 0.022 

Table 4.2 Results of RMS (Wmax/h) and Micro-strain for simply supported plate 

(N=number of modes) 

SSL 
Present:N= 1       resent:N=2       present:N=4    Chiang:N=l      Chiang:N=4 

RMS    Micro    RMS    Micro   RMS    Micro   RMS    Micro   RMS   Micro 

(dB) 
W strain W strain W strain W strain W strain 

110     1.04     64.5      1.04     80.5      1.07      77.7     1.030     87.4     1.031    112.0 

120     1.89     213.2     1.89     274.5     1.96     259.2    1.902    256.5    1.905    361.0 

Table 4.3 Linear Natural Frequencies(Hz) of Panel 1 

1st 2nd 3rd 4th 5th 6th 7th 

100.3 184.9 210.4 286.0 321.0 360.8 413.6 

The 2nd, 3rd and 4th are antisymmetrical modes. 
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Table 4.4 Convergence of RMS(Wmax/h) with Number of the Modes 

No. of Modes N=l N=2 N=3 N=4 
RMS(Wmax/h) 2.0252 1.9626 1.8676 1.8695 

Table 4.5 The Natural Frequencies (rad/sec.) 

j£ 2nd 3rd 4th 5th 6th 

629.95 1161.6 1322.0 17961 2016.6 226TÖ" 

_Z?J 8th 9th 10th 11th 12th 

2598.7    2758.1     3125.7    3393.4    3526.6 3734.8 

Table 4.6 Frequencies for the baseline configuration (rad/sec.) 

AT/ATcr 1st 2nd 3rd 4th 5th 6th 
0.0 630.0 1161.6 1322.0 1796.8 2016.6 2267.0 
2.0 811.9 848.3 1135.6 1406.0 1784.2 2122.8 
3.0 1046.2 1100.7 1265.0 1421.6 1940.2 2251.4 
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Fig. 4.1 Twisted ribbon test via transverse corner forces 
(E=107, i/=0.25, h=0.05)(From Tessler and Hughes, 1985) 
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Fig. 4.2 Twisted ribbon test via twisting corner moments(E=107, 
z/=0.25, h=0.05)(From Tessler and Hughes, 1985) 
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Fig. 4.3 Rhombic cantilever plate 
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Fig. 4.4 Wmax/h vs. AT/ATref. for (0/90) composite plate 
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Fig. 4.5 Wmax/h vs. AT for an isosceles triangular plate 
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Fig. 4.6 Dimensionless critical temperature vs. a/h for a rectangular laminate 

57 



J 0.6 (- 

0.2 

0.0 
/0 

(45/-45)n 
15X12X0.08 in. 
Simply Supported 
8X8X2 mesh (128 elements) 

80 90 

AT 
100 

Fig. 4.7 Wmax/h vs. AT for various number of layers 
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Fig. 4.8 Wmax/h vs. AT for a long rectangular laminate 
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Fig. 4.9 Centerline deflection of a 36x12x0.048 in. angle-ply (60/-60) laminate 
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Fig. 4.10 Wmax/h vs. AT for a long rectangular 
laminate with mechanical load 0.01 psi 
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Fig. 4.11 Centerline deflection of a 36x12x0.048 in. 
angle-ply (60/-60) laminate with mechanical load 0.01 psi 
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Fig. 4.12 Wmax/h vs. skew angle for rectangular plates 
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Fig. 4.13 RMS Wmax/h vs. SPL for Panel 1 
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Fig. 4.14 RMS max. micro strain vs. SPL for Panel 1 
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Fig. 4.15 The maximum deflection spectrum vs. frequency for Panel 1 
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Fig. 4.16 RMS max. micro strain vs. SPL for Panel 2 
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Fig. 4.17 RMS max. micro strain vs. SPL for Panel 2 
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Fig. 4.18 The maximum deflection spectrum vs. frequency for Panel 2 
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Fig. 4.20 RMS Wmax/h vs. SPL for Panel 3 
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Fig. 4.21 RMS max. micro strain vs. SPL for Panel 3 
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Fig. 4.22 The maximum deflection spectrum vs. frequency for Panel 3 

65 



E 

100 110 120 

Sound Pressure Level (dB) 

130 

Fig. 4.23 RMS (Wmax/h) vs. SPL for the baseline configuration 
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Fig. 4.24 Micro-strain vs. SPL for the baseline configuration 
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Fig. 4.26 RMS (Wmax/h) vs. SPL for the simply supported panel 
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Fig. 4.27 Micro-strain vs. SPL for the simply supported panel 
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Fig. 4.28 The maximum deflection spectrum 
vs. frequency for the simply supported panel 
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1st mode 

0    0 

Fig. 4.29 The mode shapes of (0/90) clamped panel 

2nd mode 
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Fig. 4.29 Continued 

69 



3rd mode 

0    0 

Fig. 4.29 Continued 

4th mode 

0    0 

Fig. 4.29 Continued 
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5th mode 
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Fig. 4.29 Continued 

6th mode 
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Fig. 4.29 Continued 
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Fig. 4.29 Continued 

1st mode, Tem. Change=97.792 (deg. F) 
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Fig. 4.30 The mode shapes of (0/90) clamped panel 

72 



2nd mode, Tern. Change=97.792 (dog. F) 

Fig. 4.30 Continued 

3rd mode, Tom. Change=97.792 (deg. F) 
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Fig. 4.30 Continued 

73 



4th mode, Tern. Change=97.792 (deg. F) 
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Fig. 4.30 Continued 

5th mode. Tern. Change=97.792 (deg. F) 
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Fig. 4.30 Continued 
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Fig. 4.30 Continued 

1st mode, Tern. Change= 149.688 (deg. F) 
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Fig. 4.31 The mode shapes of (0/90) clamped panel 

75 



2nd mode, Tern. Changes 149.688 (deg. F) 

Fig. 4.31 Continued 

3rd mode, Tom. Change» 149.688 (dog. F) 

Fig. 4.31 Continued 
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4th mode. Tern. Change=149.688 (deg. F) 
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Fig. 4.31 Continued 

5th mode, Tern. Change= 149.688 (deg. F) 
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Fig. 4.31 Continued 
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Fig. 4.32 RMS (Wmax/h) vs. SPL for the (0/90) panel 
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Fig. 4.34 RMS (Wmax/h) vs. SPL for a skewed panel 
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Fig. 4.36 Distributions of RMS W/h along the center line of the panel 
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Chapter 5 

CONCLUSIONS 

Using three-node Mindlin plate element with improved shear deformation, the gov- 

erning nonlinear equations of motion have been derived for composite structures subjected 

to a combined acoustic/thermal loading. In order to simulate the acoustic waves in the 

progressive wave test facility, a grazing incidence wave model is used in the derivation. 

An innovative solution procedure has been created and the equations of motion were 

solved for applications of thermal postbucking and large deflection random response of 

thermally buckled structures. 

The critical temperature change that produced panel buckling was determined by the 

incremental equations of motion. The first buckling mode was used as the initial shape 

of the postbuckling solution. Newton-Raphson iteration method was used to solve for the 

deflections corresponding to a given temperature raise distribution. The extension and 

bending coupling makes the plate bending out of plane immediately when the plate is 

heated without prebuckling stage. The most interesting aspect of this study is the mode 

shape change. The described solution procedure can automatically obtains the mode 

changing in the postbuckling stage as long as the incremental step of temperature change 

is small enough, regardless of the presence of mechanical load. 

In order to solve the system equation of motion, an innovative solution procedure 

is described. The response is assumed to be the sum of static component and dynamic 

component.   Substituting the total displacements into the system equation of motion 
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and regrouping the terms, the equation is of the form F({W}S) = G({W}t). The 

left-hand-side of the equation, F({W}S), is independent of time t; while the right-hand- 

side, G({W}t), is time dependent. Therefore, the only possibility for both F and G to 

exist is that both F and G equal to zero, and the two equations are thus obtained. For 

the dynamic components, the modal transformation was used to reduce the number of 

equations. Then the equivalent linearization method is utilized to obtain the coupled linear 

equation. Finally, the modal transform was used to uncouple the equation of motion, and 

an iteration was used to obtain the random response. 

The most significant contributions of the present study are the formulation and 

solution procedure, including grazing wave, of nonlinear modal equations used to describe 

the random response of composite structures to combined acoustic and thermal loads. 

These general equations are applicable not only to the present research, but also to other 

dynamic problems like gust response, buffet response of an aircraft. Comparing with the 

Sequential Load method(SQL), this Simultaneous Load method(SML) is much logical 

mathematically and straightforward, it is then easier to formulate nonlinear problems with 

combined loading. The solution procedure itself can take care of the inter-dependence 

between the thermal effects and the acoustic-structural response. In the SQL method 

engineering judgment is essential, otherwise some terms might be missed. 

From the results, an interesting observation is that the antisymmetric modes partici- 

pate in the response of the plate for grazing incidence acoustic wave. It is demonstrated 

that three or four modes will give converged RMS deflection. It is also found that 

the RMS maximum strain with temperature could be either smaller or larger than the 

one without temperature. This is due to that: (1) the temperature increases the thermal 

component, and (2) the thermal postbuckling deflection increases the nonlinear stiffness 
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which reduces the RMS deflection and it leads to smaller strain component. Uniform 

and nonuniform temperature distribution effect on random responses is investigated. The 

nonuniform temperature considered is that there is a temperature gradient along the edge 

of the plate. The results show that there is very little difference in random responses for 

the two temperature distributions studied. For plate with initial imperfection in deflection 

which has the same maximum deflection as the thermal postbuckling deflection, the plate 

with initial imperfection is suffer and leads to smaller random responses. 

Future improvements for grazing wave model and numerical integration methods are 

needed. The correlation study between numerical results and test results is very important 

if one wants to use this method to a practical problem. 
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Appendix A 

THE FORMULATIONS FOR 0^,'s 

CWn = 2 (^126 - 2/316)2/23 (A-1) 

CW12 = 2(2/236 - 2/126)2/31 (A-2) 

cvv>i3= 2 ^31^ ~ y2*h)yu (A.3) 

C^u = 77(2136 - ^216)2/23 - „22162/31 + ^1362/12 (A.4) 

CWi5 = 2^216 - «326)2/31 - 2^3262/12 + 2^2162/23 (A.5) 

16 = 2(2326 _ «136)2/12 - 2a;136y23 + 2a;3262/31 (A.6) 

CW21 = 2(2/126 - 2/316)232 - 2-22162/31 + 2Xi36yi2 (A.7) 

1 11 
CW22 = -(2/236 - 2/i26)«i3 - 2-23262/12 + 2a;2i62/23 (A.8) 

1 11 
CV^23 = 2 (^3l6 - 2/236)221 - 2-21362/23 + 2"2326y31 (A.9) 
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CW24 = T(313& - ^216)^32 (A.10) 

CW25 = 2-(a:2l6 ~ £326)213 (A.11) 

C^26 = 2(2326 - 2136)221 (A.12) 
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Appendix B 

THE ELEMENT MATRICES 

Linear stiffness matrix 

[k]+ = J[Ch]T[D][Ch]dA (B.l) 
A 

[*W = J [Ch]T[B][Cm]dA (B.2) 
A 

[kU = J[Cm]T[B][Cb]dA (B.3) 
A 

[k]m= I [Cm]T[A)[Cm]dA (B.4) 

A 

Linear stiffness matrix due to w0(x,y) 

[*o]j = f [Cw]T[6o]T[A][60] [C#]dA (B.5) 

[ko]H = J [C#]T[0o]T[B][Ch]dA + J [C^]T{e0)T[A][e0] [C„]dA (B.6) 
A A 

[ko]hm = J [C^]T[e0]T[A)[Cm)dA (B.7) 
A 

[koU = j [ch]T[B][e0){c^]dA^ j [c^]T[e0\T[A][eo][c^]dA     (B.8) 

A A 

[*.]* = / [C^]T[öo}T[B][Cb}dA + j [Chf[B][60] [Cn,]dA 
A A 

+ J [C^]T[0o}T[A}[6o}[Cw]dA 
A 

Iko^m = / [C„]T[e0]T[A][Cm)dA (B.10) 

(B.9) 
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[fcoU = / \Crn]T[A}[60] [C„]dA (B.ll) 
A 

Linear stiffness matrix due to {N^T} 

[kNAT]b = J [C#] T[NAT] [C&] dA (B.12) 
A 

[kNAT]H = J [Cj,b]T[NAT][CwldA (B.13) 
A 

[kNATlw = J [CW]
T

[NAT][C^b]dA (B.14) 
A 

[kNAT]^ = j [C^]T[NAT][Cw]dA (B.15) 
A 

Linear stiffness matrices due to {N0} 

A 

First-order nonlinear stifmess matrix 

nl 

[kNo]b = / [C&] T[N0] [C&] dA (B.16) 
A 

[kNo]H = J [C&] T[N0] [C^] dA (B.17) 
A 

[kNol^b = J [CwflNo] [C#] dA (B.18) 
A 

[kNo]^ = J [C^]T[N0][C^]dA (B.19) 

*W = / [Crpb]T[Of[B][Cb]dA (B.20) 
A 

[nl}bm = J [C^]T[ef[A][Cm]dA (B.21) 
A 

M]# = j [Cbf[B][0] [Cn]dA (B.22) 
A 

[n% = j[Cbf[B]{9][C^]dA + J [C^]T[d]T[B][Cb]dA (B.23) 
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«I]*» = / [C^]T[6]T[A}[Cm]dA (B.24) 
A 

[nl]mh = J [Cm]T[A][0]\C^h}dA (B.25) 

A 

Jilt, If/ 

A 

First-order nonlinear stiffness matrix due to w0(x,y) 

[nl0]6 =  / [C^b]T[6]T[A][90][C^]dA + J [C^]T[eo]T[A}[6][C^dA       (B.27) 

A A 

[*loW = / l^b]T[0}T[A}[9o][C^]dA + J [C^}T[eo)T[A}\0][C^]dA      (B.28) 
A A 

[nl0]# = j [Ci*]T[0\T[A][eo][Cih]dA +J [C^\T[60]T[A][B)[C^\dA      (B.29) 

A A 

[nl0]^ =  / {Cw}T[e}T[A}[60}[Cw]dA + J [C^]T[e0)T[A)[e][C^]dA      (B.30) 

A A 

First-order nonlinear stiffness matrix due to {Nm}(=[A]{e^}) 

[nlNm]h = J [C^]T[Nm][C^b]dA (B.31) 
A 

[nlNm]H = j [C&] T[Nm] [CM] dA (B.32) 
A 

[nlNmU = J [Cw}T[Nm}[C^]dA (B.33) 
A 

{nlNm}^ = f [CM] 
T[Nm] [CM] dA (B.34) 

A 

First-order nonlinear stiffness matrix due to {Nb}(=[B]{/c}) 

[nlNb]b = J [C^bf[Nb] [C^dA (B.35) 

A 

WlNb]H = J [C^]T[Nb][C^]dA (B.36) 
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MiViU = / [Cw] T[Nb] [C#] dA (B.37) 
A 

["Im]* = I iCw] TlNl>} iCw}dA (B-38) 
A 

Second-order nonlinear stiffness matrix 

Ml* = \J [C#]T^]r[^]^[C#]^ (B.39) 

«2W = \f [C^]T[0]T[A][B]{C^}dA (B.40) 

n2]^ = \J [c^]T[e]T[A][e][cth]dA (B.41) 

A 

n2]* = \j [C**]TWTlAM [Cw]dA (B.42) 
A 

Linear stiffness matrix due to shear 

Load vectors 

[*.]j = / ic7b] T[AS] [Clh] dA (B.43) 
A 

%)H = / [CT6] 
T[AS] [C7 J <L4 (B.44) 

A 

[**]# = / IPW] T\A*\ [Cyb] dA (B.45) 

[ks]^ = I [Crf] T[AS] [Crf] dA (B.46) 
A 

{PAT}m = J [Cm]T{NAT}dA (B.47) 
A 

{PNo}m = / -[Cmf{N0}dA (B.48) 
A 

{PATo}b = I [Ci,b]T[0of{NAT}dA (B.49) 

96 



{PNoo}b = - J[C^}T[eof{N0}dA 
A 

(B.50) 

A 

(B.51) 

{PNoo}^ = ~ J [C^]T[Oo}T{N0}dA 
A 

(B.52) 

{PAT}^ = J [Cbf{MAT}dA 
A 

(B.53) 

{Pp)b= / [Hwfp(x,y,t)dA 
A 

oo 

= _L   / P(u:)eiut f e~^s[nX[Hw}TdAdu; 
-oo                      A 

oo 

(B.54) 

—oo 

00 

= h / P^e^ / e~'¥sinX[Hwi,}TdAdu 
-00                              Ä 

oo 

(B.55) 

~"OO 

( For Eqs.  (2.107) and (2.108) see Ref.[Clarkson]) 

Mass matrix 

Hb = J [Hwf ph{Hw]dA 
A 

(B.56) 

[m]H =  / [Hwf Ph[Hw^]dA 
A 

(B.57) 

H#= / [Hwi,f ph[Hw]dA 
A 

(B.58) 
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Mtf = / [HW^\   ph[Hw^]dA 
A 

]m = J ([Hu] + [Hv]fph([Hu] + [Hv))dA 

(B.59) 

(B.60) 
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LIST OF SYMBOLS 

a, b 

[A],[B],[D] 

c 

[C] 

E 

E[] 

{e} 

G 

[H\ 

h 

[K] 

{M} 

[M] 

w 
[Nl] ,[N2] 

<q> 

[Q] 

{R} 

t 

u, v 

w 

x,y,z 

Greeek Symbols 

a 

AT 

{6}, <7> 

lengths of a plate 

laminate extensional, extension-bending and bending stiffnesses 

acoustic wave traveling speed 

the matrices relating slope and curvature with displacements 

Young's modulus 

expected value 

linearization error vector 

modal force vector of coupled and uncoupled modal equations 

the stiffness term of the modal equations of motion 

shear modulus of the materials 

single degree of freedom transfer function 

shape function matrices 

thickness of plate 

linear stiffness 

resultant moments per unit length acting on a laminate 

mass matrix 

resultant forces per unit length acting on a laminate 

the first and second order nonlinear system stiffness matrices 

nodal load vector 

coupled modal coordinate vector 

lamina reduced stiffness 

resultant shear forces per unit length acting on a laminate 

time 

inplane displacement 

lateral displacement 

Cartesian coordinates 

thermal expansion coefficient and shear correction factor 

temperature distribution 

strain vector 
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C damping ratio 

T} uncoupled modal coordinates 

0,[9] acoustic wave incident angle, and as defined in Eq. (2.26) 

[<f>] modal matrix 

*ßx, ^y rotations of the normal around x and y axes due to bending only 

Q equivalent linear frequency 

ojn linear frequency of the deformed structure 

Subscripts 

b bending 

m membrane 

Nb stiffness matrices due to {Nt,} 

Nm stiffness matrices due to {Nm} 

No stiffness matrices due to {N0> 

NAT stiffness matrices due to {N^T} 

o quantity related with initial displacement 

T tangent stiffness 

AT thermal 
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